FedHarmony: unlearning scanner bias with distributed data
The ability to combine data across scanners and studies is vital for neuroimaging, to increase both statistical power and the representation of biological variability. However, combining datasets across sites leads to two challenges: first, an increase in undesirable non-biological variance due to s...
Главные авторы: | Dinsdale, N, Jenkinson, M, Namburete, A |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
Springer
2022
|
Схожие документы
-
Unlearning scanner bias for MRI harmonisation
по: Dinsdale, NK, и др.
Опубликовано: (2020) -
Unlearning scanner bias for MRI harmonisation in medical image segmentation
по: Dinsdale, NK, и др.
Опубликовано: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal.
по: Dinsdale, NK, и др.
Опубликовано: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal
по: Nicola K. Dinsdale, и др.
Опубликовано: (2021-03-01) -
SFHarmony: source free domain adaptation for distributed neuroimaging analysis
по: Dinsdale, NK, и др.
Опубликовано: (2024)