FedHarmony: unlearning scanner bias with distributed data
The ability to combine data across scanners and studies is vital for neuroimaging, to increase both statistical power and the representation of biological variability. However, combining datasets across sites leads to two challenges: first, an increase in undesirable non-biological variance due to s...
主要な著者: | Dinsdale, N, Jenkinson, M, Namburete, A |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
Springer
2022
|
類似資料
-
Unlearning scanner bias for MRI harmonisation
著者:: Dinsdale, NK, 等
出版事項: (2020) -
Unlearning scanner bias for MRI harmonisation in medical image segmentation
著者:: Dinsdale, NK, 等
出版事項: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal.
著者:: Dinsdale, NK, 等
出版事項: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal
著者:: Nicola K. Dinsdale, 等
出版事項: (2021-03-01) -
SFHarmony: source free domain adaptation for distributed neuroimaging analysis
著者:: Dinsdale, NK, 等
出版事項: (2024)