FedHarmony: unlearning scanner bias with distributed data

The ability to combine data across scanners and studies is vital for neuroimaging, to increase both statistical power and the representation of biological variability. However, combining datasets across sites leads to two challenges: first, an increase in undesirable non-biological variance due to s...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Dinsdale, N, Jenkinson, M, Namburete, A
Μορφή: Conference item
Γλώσσα:English
Έκδοση: Springer 2022