Semi-supervised learning of facial attributes in video

In this work we investigate a weakly-supervised approach to learning facial attributes of humans in video. Given a small set of images labeled with attributes and a much larger unlabeled set of video tracks, we train a classifier to recognize these attributes in video data. We make two contributions...

Description complète

Détails bibliographiques
Auteurs principaux: Cherniavsky, N, Laptev, I, Sivic, J, Zisserman, A
Format: Conference item
Langue:English
Publié: Springer 2013