Self-supervised learning of structural representations of visual objects

This thesis explores how a computer can learn the structure of visual objects in the absence of strong supervision using self-supervised learning. We demonstrate that we can learn structural representations of objects using an autoencoding framework with reconstruction as the key learning signal. We...

Description complète

Détails bibliographiques
Auteur principal: Jakab, T
Autres auteurs: Vedaldi, A
Format: Thèse
Langue:English
Publié: 2021
Sujets: