Self-supervised learning of structural representations of visual objects
This thesis explores how a computer can learn the structure of visual objects in the absence of strong supervision using self-supervised learning. We demonstrate that we can learn structural representations of objects using an autoencoding framework with reconstruction as the key learning signal. We...
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2021
|
الموضوعات: |