Deterministic binary filters for convolutional neural networks

We propose Deterministic Binary Filters, an approach to Convolutional Neural Networks that learns weighting coefficients of predefined orthogonal binary basis instead of the conventional approach of learning directly the convolutional filters. This approach results in model architectures with signif...

Szczegółowa specyfikacja

Opis bibliograficzny
Główni autorzy: Tseng, V, Bhattachara, S, Fernández-Marqués, J, Alizadeh, M, Tong, C, Lane, N
Format: Conference item
Wydane: International Joint Conferences on Artificial Intelligence Organization 2018