Benchmarking data-driven rainfall-runoff models in Great Britain: a comparison of LSTM-based models with four lumped conceptual models
Long short-term memory (LSTM) models are recurrent neural networks from the field of deep learning (DL) which have shown promise for time series modelling, especially in conditions when data are abundant. Previous studies have demonstrated the applicability of LSTM-based models for rainfall–runoff m...
Hlavní autoři: | Lees, T, Buechel, M, Anderson, B, Slater, L, Reece, S, Coxon, G, Dadson, SJ |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Copernicus Publications
2021
|
Podobné jednotky
-
Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models
Autor: T. Lees, a další
Vydáno: (2021-10-01) -
Hydrological impact of widespread afforestation in Great Britain using a large ensemble of modelled scenarios
Autor: Buechel, M, a další
Vydáno: (2022) -
Hydrological impact of widespread afforestation in Great Britain using a large ensemble of modelled scenarios
Autor: Marcus Buechel, a další
Vydáno: (2022-01-01) -
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
Autor: M. Buechel, a další
Vydáno: (2024-05-01) -
Broadleaf afforestation impacts on terrestrial hydrology insignificant compared to climate change in Great Britain
Autor: Buechel, M, a další
Vydáno: (2024)