ADMM for MPC with state and input constraints, and input nonlinearity
In this paper we propose an Alternating Direction Method of Multipliers (ADMM) algorithm for solving a Model Predictive Control (MPC) optimization problem, in which the system has state and input constraints and a nonlinear input map. The resulting optimization is nonconvex, and we provide a proof o...
Asıl Yazarlar: | East, S, Cannon, M |
---|---|
Materyal Türü: | Conference item |
Baskı/Yayın Bilgisi: |
Institute of Electrical and Electronics Engineers
2018
|
Benzer Materyaller
-
An ADMM algorithm for MPC-based energy management in hybrid electric vehicles with nonlinear losses
Yazar:: East, S, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
MPC on state space models with stochastic input map
Yazar:: Couchman, P, ve diğerleri
Baskı/Yayın Bilgisi: (2006) -
Banded null basis and ADMM for embedded MPC
Yazar:: Dang, Thuy V, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
An analysis of hot‐started ADMM for linear MPC
Yazar:: Mitsuru Toyoda, ve diğerleri
Baskı/Yayın Bilgisi: (2021-10-01) -
MPC in systems with continuous and discrete control inputs
Yazar:: Olav Slupphaug, ve diğerleri
Baskı/Yayın Bilgisi: (1998-10-01)