Truncated max-of-convex models
Truncated convex models (TCM) are a special case of pairwise random fields that have been widely used in computer vision. However, by restricting the order of the potentials to be at most two, they fail to capture useful image statistics. We propose a natural generalization of TCM to high-order rand...
Auteurs principaux: | Pansari, P, Mudigonda, P |
---|---|
Format: | Conference item |
Publié: |
Computer Vision Foundation
2017
|
Documents similaires
-
Truncated max-of-convex models
par: Mudigonda, P, et autres
Publié: (2017) -
Improved moves for truncated convex models
par: Kumar, MP, et autres
Publié: (2009) -
Improved moves for truncated convex models
par: Pawan Kumar, M, et autres
Publié: (2011) -
Optimal submodular extensions for marginal estimation
par: Pansari, P, et autres
Publié: (2018) -
On hyperspaces of max-plus and max-min convex sets
par: Bazylevych Lidiya, et autres
Publié: (2017-01-01)