Predicting voltammetry using physics-informed neural networks

We propose a discretization-free approach to simulation of cyclic voltammetry using Physics-Informed Neural Networks (PINNs) by constraining a feed-forward neutral network with the diffusion equation and electrochemically consistent boundary conditions. Using PINNs, we first predict one-dimensional...

ver descrição completa

Detalhes bibliográficos
Main Authors: Chen, H, Kätelhön, E, Compton, RG
Formato: Journal article
Idioma:English
Publicado em: American Chemical Society 2022