Structural basis for prodrug recognition by the SLC15 family of proton-coupled peptide transporters

A major challenge in drug development is the optimization of intestinal absorption and cellular uptake. A successful strategy has been to develop prodrug molecules, which hijack solute carrier (SLC) transporters for active transport into the body. The proton-coupled oligopeptide transporters, PepT1...

Full description

Bibliographic Details
Main Authors: Minhas, G, Newstead, S
Format: Journal article
Published: National Academy of Sciences 2019
_version_ 1797066987059281920
author Minhas, G
Newstead, S
author_facet Minhas, G
Newstead, S
author_sort Minhas, G
collection OXFORD
description A major challenge in drug development is the optimization of intestinal absorption and cellular uptake. A successful strategy has been to develop prodrug molecules, which hijack solute carrier (SLC) transporters for active transport into the body. The proton-coupled oligopeptide transporters, PepT1 and PepT2, have been successfully targeted using this approach. Peptide transporters display a remarkable capacity to recognize a diverse library of di- and tripeptides, making them extremely promiscuous and major contributors to the pharmacokinetic profile of several important drug classes, including beta-lactam antibiotics and antiviral and antineoplastic agents. Of particular interest has been their ability to recognize amino acid and peptide-based prodrug molecules, thereby providing a rational approach to improving drug transport into the body. However, the structural basis for prodrug recognition has remained elusive. Here we present crystal structures of a prokaryotic homolog of the mammalian transporters in complex with the antiviral prodrug valacyclovir and the peptide-based photodynamic therapy agent, 5-aminolevulinic acid. The valacyclovir structure reveals that prodrug recognition is mediated through both the amino acid scaffold and the ester bond, which is commonly used to link drug molecules to the carrier’s physiological ligand, whereas 5-aminolevulinic acid makes far fewer interactions compared with physiological peptides. These structures provide a unique insight into how peptide transporters interact with xenobiotic molecules and provide a template for further prodrug development.
first_indexed 2024-03-06T21:49:49Z
format Journal article
id oxford-uuid:4adbbac1-39ef-4325-9341-b5f3c590cf34
institution University of Oxford
last_indexed 2024-03-06T21:49:49Z
publishDate 2019
publisher National Academy of Sciences
record_format dspace
spelling oxford-uuid:4adbbac1-39ef-4325-9341-b5f3c590cf342022-03-26T15:40:05ZStructural basis for prodrug recognition by the SLC15 family of proton-coupled peptide transportersJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:4adbbac1-39ef-4325-9341-b5f3c590cf34Symplectic Elements at OxfordNational Academy of Sciences2019Minhas, GNewstead, SA major challenge in drug development is the optimization of intestinal absorption and cellular uptake. A successful strategy has been to develop prodrug molecules, which hijack solute carrier (SLC) transporters for active transport into the body. The proton-coupled oligopeptide transporters, PepT1 and PepT2, have been successfully targeted using this approach. Peptide transporters display a remarkable capacity to recognize a diverse library of di- and tripeptides, making them extremely promiscuous and major contributors to the pharmacokinetic profile of several important drug classes, including beta-lactam antibiotics and antiviral and antineoplastic agents. Of particular interest has been their ability to recognize amino acid and peptide-based prodrug molecules, thereby providing a rational approach to improving drug transport into the body. However, the structural basis for prodrug recognition has remained elusive. Here we present crystal structures of a prokaryotic homolog of the mammalian transporters in complex with the antiviral prodrug valacyclovir and the peptide-based photodynamic therapy agent, 5-aminolevulinic acid. The valacyclovir structure reveals that prodrug recognition is mediated through both the amino acid scaffold and the ester bond, which is commonly used to link drug molecules to the carrier’s physiological ligand, whereas 5-aminolevulinic acid makes far fewer interactions compared with physiological peptides. These structures provide a unique insight into how peptide transporters interact with xenobiotic molecules and provide a template for further prodrug development.
spellingShingle Minhas, G
Newstead, S
Structural basis for prodrug recognition by the SLC15 family of proton-coupled peptide transporters
title Structural basis for prodrug recognition by the SLC15 family of proton-coupled peptide transporters
title_full Structural basis for prodrug recognition by the SLC15 family of proton-coupled peptide transporters
title_fullStr Structural basis for prodrug recognition by the SLC15 family of proton-coupled peptide transporters
title_full_unstemmed Structural basis for prodrug recognition by the SLC15 family of proton-coupled peptide transporters
title_short Structural basis for prodrug recognition by the SLC15 family of proton-coupled peptide transporters
title_sort structural basis for prodrug recognition by the slc15 family of proton coupled peptide transporters
work_keys_str_mv AT minhasg structuralbasisforprodrugrecognitionbytheslc15familyofprotoncoupledpeptidetransporters
AT newsteads structuralbasisforprodrugrecognitionbytheslc15familyofprotoncoupledpeptidetransporters