DAMNETS: a deep autoregressive model for generating Markovian network time series
Generative models for network time series (also known as dynamic graphs) have tremendous potential in fields such as epidemiology, biology and economics, where complex graph-based dynamics are core objects of study. Designing flexible and scalable generative models is a very challenging task due to...
المؤلفون الرئيسيون: | Clarkson, J, Cucuringu, M, Elliott, A, Reinert, G |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
Journal of Machine Learning Research
2022
|
مواد مشابهة
-
The GNAR-edge model: a network autoregressive model for networks with time-varying edge weights
حسب: Mantziou, A, وآخرون
منشور في: (2023) -
DAMNet: Dual Attention Mechanism Deep Neural Network for Underwater Biological Image Classification
حسب: Peixin Qu, وآخرون
منشور في: (2023-01-01) -
DAMNet: A Dual Adjacent Indexing and Multi-Deraining Network for Real-Time Image Deraining
حسب: Penghui Zhao, وآخرون
منشور في: (2022-12-01) -
Random walk based conditional generative model for temporal networks with attributes
حسب: Limnios, S, وآخرون
منشور في: (2022) -
Detection and clustering of lead-lag networks for multivariate time series with an application to financial markets
حسب: Bennett, S, وآخرون
منشور في: (2022)