The scaling limit of random outerplanar maps
<p style="text-align:justify;"> A planar map is outerplanar if all its vertices belong to the same face. We show that random uniform outerplanar maps with n vertices suitably rescaled by a factor 1/n−−√ converge in the Gromov–Hausdorff sense to 72–√/9 times Aldous’ Brownian tree. Th...
Päätekijä: | Caraceni, A |
---|---|
Aineistotyyppi: | Journal article |
Julkaistu: |
Institute Henri Poincaré
2016
|
Samankaltaisia teoksia
-
On the spread of outerplanar graphs
Tekijä: Gotshall Daniel, et al.
Julkaistu: (2022-03-01) -
Fuzzy Outerplanar Graphs and Its Applications
Tekijä: Deivanai Jaisankar, et al.
Julkaistu: (2024-09-01) -
On the number of series parallel and outerplanar graphs
Tekijä: Manuel Bodirsky, et al.
Julkaistu: (2005-01-01) -
Strong Chromatic Index of Outerplanar Graphs
Tekijä: Ying Wang, et al.
Julkaistu: (2022-04-01) -
Choosability with separation of cycles and outerplanar graphs
Tekijä: Jean-Christophe Godin, et al.
Julkaistu: (2023-01-01)