On a novel gradient flow structure for the aggregation equation
The aggregation equation arises naturally in kinetic theory in the study of granular media, and its interpretation as a 2-Wasserstein gradient flow for the nonlocal interaction energy is well-known. Starting from the spatially homogeneous inelastic Boltzmann equation, a formal Taylor expansion revea...
主要な著者: | Esposito, A, Gvalani, RS, Schlichting, A, Schmidtchen, M |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Springer
2024
|
類似資料
-
Phase transitions for nonlinear nonlocal aggregation-diffusion equations
著者:: Carrillo, JA, 等
出版事項: (2021) -
Nonlocal-interaction equation on graphs: Gradient flow structure and continuum limit
著者:: Esposito, A, 等
出版事項: (2021) -
Long-time behaviour and phase transitions for the Mckean–Vlasov equation on the torus
著者:: Carrillo, JA, 等
出版事項: (2019) -
Fully discrete positivity-preserving and energy-dissipating schemes for aggregation-diffusion equations with a gradient-flow structure
著者:: Bailo, R, 等
出版事項: (2020) -
Many-particle limit for a system of interaction equations driven by Newtonian potentials
著者:: Di Francesco, M, 等
出版事項: (2021)