Concordance maps in knot Floer homology
We show that a decorated knot concordance C from K to K' induces a homomorphism F_C on knot Floer homology that preserves the Alexander and Maslov gradings. Furthermore, it induces a morphism of the spectral sequences to HF^(S^3) = Z_2 that agrees with F_C on the E^1 page and is the identity on...
Main Authors: | , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Mathematical Sciences Publishers
2016
|