Faithful approaches to rule learning
Rule learning involves developing machine learning models that can be applied to a set of logical facts to predict additional facts, as well as providing methods for extracting from the learned model a set of logical rules that explain symbolically the model’s predictions. Existing such approaches,...
Hlavní autoři: | Tena Cucala, DJ, Cuenca Grau, B, Motik, B |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
IJCAI Organization
2022
|
Podobné jednotky
-
Faithful rule extraction for differentiable rule learning models
Autor: Wang, X, a další
Vydáno: (2024) -
Relational graph convolutional networks do not learn sound rules
Autor: Morris, M, a další
Vydáno: (2024) -
Explainable GNN-based models over knowledge graphs
Autor: Tena Cucala, DJ, a další
Vydáno: (2022) -
On the correspondence between monotonic max-sum GNNs and datalog
Autor: Tena Cucala, D, a další
Vydáno: (2023) -
On the correspondence between monotonic max-sum GNNs and Datalog
Autor: Tena Cucala, D, a další
Vydáno: (2023)