Faithful approaches to rule learning
Rule learning involves developing machine learning models that can be applied to a set of logical facts to predict additional facts, as well as providing methods for extracting from the learned model a set of logical rules that explain symbolically the model’s predictions. Existing such approaches,...
Κύριοι συγγραφείς: | Tena Cucala, DJ, Cuenca Grau, B, Motik, B |
---|---|
Μορφή: | Conference item |
Γλώσσα: | English |
Έκδοση: |
IJCAI Organization
2022
|
Παρόμοια τεκμήρια
-
Faithful rule extraction for differentiable rule learning models
ανά: Wang, X, κ.ά.
Έκδοση: (2024) -
Relational graph convolutional networks do not learn sound rules
ανά: Morris, M, κ.ά.
Έκδοση: (2024) -
Explainable GNN-based models over knowledge graphs
ανά: Tena Cucala, DJ, κ.ά.
Έκδοση: (2022) -
On the correspondence between monotonic max-sum GNNs and datalog
ανά: Tena Cucala, D, κ.ά.
Έκδοση: (2023) -
On the correspondence between monotonic max-sum GNNs and Datalog
ανά: Tena Cucala, D, κ.ά.
Έκδοση: (2023)