Faithful approaches to rule learning
Rule learning involves developing machine learning models that can be applied to a set of logical facts to predict additional facts, as well as providing methods for extracting from the learned model a set of logical rules that explain symbolically the model’s predictions. Existing such approaches,...
Автори: | Tena Cucala, DJ, Cuenca Grau, B, Motik, B |
---|---|
Формат: | Conference item |
Мова: | English |
Опубліковано: |
IJCAI Organization
2022
|
Схожі ресурси
Схожі ресурси
-
Faithful rule extraction for differentiable rule learning models
за авторством: Wang, X, та інші
Опубліковано: (2024) -
Relational graph convolutional networks do not learn sound rules
за авторством: Morris, M, та інші
Опубліковано: (2024) -
Explainable GNN-based models over knowledge graphs
за авторством: Tena Cucala, DJ, та інші
Опубліковано: (2022) -
On the correspondence between monotonic max-sum GNNs and datalog
за авторством: Tena Cucala, D, та інші
Опубліковано: (2023) -
On the correspondence between monotonic max-sum GNNs and Datalog
за авторством: Tena Cucala, D, та інші
Опубліковано: (2023)