Nilpotent completions of groups, Grothendieck pairs, and four problems of Baumslag
Two groups are said to have the same nilpotent genus if they have the same nilpotent quotients. We answer four questions of Baumslag concerning nilpotent completions. (i) There exists a pair of finitely generated, residually torsion-free-nilpotent groups of the same nilpotent genus such that one is...
Auteurs principaux: | Bridson, M, Reid, A |
---|---|
Format: | Journal article |
Publié: |
2012
|
Documents similaires
-
The homology of groups, profinite completions, and echoes of Gilbert Baumslag
par: Bridson, MR
Publié: (2020) -
Grothendieck's problems concerning profinite completions and representations of groups
par: Bridson, M, et autres
Publié: (2004) -
Tiling Problems on Baumslag-Solitar groups.
par: Nathalie Aubrun, et autres
Publié: (2013-09-01) -
On Nilpotent Multipliers of Pairs of Groups
par: Azam Hokmabadi, et autres
Publié: (2020-12-01) -
ON BOUNDED LANGUAGES AND THE GEOMETRY OF NILPOTENT GROUPS
par: Bridson, M, et autres
Publié: (1995)