Nilpotent completions of groups, Grothendieck pairs, and four problems of Baumslag
Two groups are said to have the same nilpotent genus if they have the same nilpotent quotients. We answer four questions of Baumslag concerning nilpotent completions. (i) There exists a pair of finitely generated, residually torsion-free-nilpotent groups of the same nilpotent genus such that one is...
Main Authors: | Bridson, M, Reid, A |
---|---|
Formato: | Journal article |
Publicado em: |
2012
|
Registos relacionados
-
The homology of groups, profinite completions, and echoes of Gilbert Baumslag
Por: Bridson, MR
Publicado em: (2020) -
Grothendieck's problems concerning profinite completions and representations of groups
Por: Bridson, M, et al.
Publicado em: (2004) -
Tiling Problems on Baumslag-Solitar groups.
Por: Nathalie Aubrun, et al.
Publicado em: (2013-09-01) -
On Nilpotent Multipliers of Pairs of Groups
Por: Azam Hokmabadi, et al.
Publicado em: (2020-12-01) -
ON BOUNDED LANGUAGES AND THE GEOMETRY OF NILPOTENT GROUPS
Por: Bridson, M, et al.
Publicado em: (1995)