Counting edge-injective homomorphisms and matchings on restricted graph classes
We consider the #W[1]-hard problem of counting all matchings with exactly k edges in a given input graph G; we prove that it remains #W[1]-hard on graphs G that are line graphs or bipartite graphs with degree 2 on one side. In our proofs, we use that k-matchings in line graphs can be equivalently vi...
المؤلفون الرئيسيون: | Curticapean, R, Dell, H, Roth, M |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
Springer Nature
2018
|
مواد مشابهة
-
Counting edge-injective homomorphisms and matchings on restricted graph classes
حسب: Curticapean, R, وآخرون
منشور في: (2017) -
Parameterized counting of partially injective homomorphisms
حسب: Roth, M
منشور في: (2021) -
Counting, modular counting and graph homomorphisms
حسب: Magkakis, A
منشور في: (2016) -
Counting restricted homomorphisms via Möbius inversion over matroid lattices
حسب: Roth, M
منشور في: (2017) -
Counting homomorphisms to K4-minor-free graphs, modulo 2
حسب: Focke, J, وآخرون
منشور في: (2021)