Counting edge-injective homomorphisms and matchings on restricted graph classes
We consider the #W[1]-hard problem of counting all matchings with exactly k edges in a given input graph G; we prove that it remains #W[1]-hard on graphs G that are line graphs or bipartite graphs with degree 2 on one side. In our proofs, we use that k-matchings in line graphs can be equivalently vi...
Автори: | Curticapean, R, Dell, H, Roth, M |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
Springer Nature
2018
|
Схожі ресурси
Схожі ресурси
-
Counting edge-injective homomorphisms and matchings on restricted graph classes
за авторством: Curticapean, R, та інші
Опубліковано: (2017) -
Parameterized counting of partially injective homomorphisms
за авторством: Roth, M
Опубліковано: (2021) -
Counting, modular counting and graph homomorphisms
за авторством: Magkakis, A
Опубліковано: (2016) -
Counting restricted homomorphisms via Möbius inversion over matroid lattices
за авторством: Roth, M
Опубліковано: (2017) -
Counting homomorphisms to K4-minor-free graphs, modulo 2
за авторством: Focke, J, та інші
Опубліковано: (2021)