Counting edge-injective homomorphisms and matchings on restricted graph classes
We consider the #W[1]-hard problem of counting all matchings with exactly k edges in a given input graph G; we prove that it remains #W[1]-hard on graphs G that are line graphs or bipartite graphs with degree 2 on one side. In our proofs, we use that k-matchings in line graphs can be equivalently vi...
Главные авторы: | Curticapean, R, Dell, H, Roth, M |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Springer Nature
2018
|
Схожие документы
-
Counting edge-injective homomorphisms and matchings on restricted graph classes
по: Curticapean, R, и др.
Опубликовано: (2017) -
Parameterized counting of partially injective homomorphisms
по: Roth, M
Опубликовано: (2021) -
Counting, modular counting and graph homomorphisms
по: Magkakis, A
Опубликовано: (2016) -
Counting restricted homomorphisms via Möbius inversion over matroid lattices
по: Roth, M
Опубликовано: (2017) -
Counting homomorphisms to K4-minor-free graphs, modulo 2
по: Focke, J, и др.
Опубликовано: (2021)