Efficient discriminative learning of parametric nearest neighbor classifiers
Linear SVMs are efficient in both training and testing, however the data in real applications is rarely linearly separable. Non-linear kernel SVMs are too computationally intensive for applications with large-scale data sets. Recently locally linear classifiers have gained popularity due to their ef...
主要な著者: | Zhang, Z, Sturgess, P, Sengupta, S, Crook, N, Torr, PHS |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
IEEE
2012
|
類似資料
-
An invariant large margin nearest neighbour classifier
著者:: Kumar, MP, 等
出版事項: (2007) -
Secure k -ish Nearest Neighbors Classifier
著者:: Shaul, Hayim, 等
出版事項: (2021) -
A pre-averaged pseudo nearest neighbor classifier
著者:: Dapeng Li
出版事項: (2024-08-01) -
Information Retrieval Document Classified with K-Nearest Neighbor
著者:: Badruz Zaman, 等
出版事項: (2016-01-01) -
Information Retrieval Document Classified with K-Nearest Neighbor
著者:: Alifian Sukma, 等
出版事項: (2018-01-01)