Efficient discriminative learning of parametric nearest neighbor classifiers
Linear SVMs are efficient in both training and testing, however the data in real applications is rarely linearly separable. Non-linear kernel SVMs are too computationally intensive for applications with large-scale data sets. Recently locally linear classifiers have gained popularity due to their ef...
Главные авторы: | Zhang, Z, Sturgess, P, Sengupta, S, Crook, N, Torr, PHS |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
IEEE
2012
|
Схожие документы
-
An invariant large margin nearest neighbour classifier
по: Kumar, MP, и др.
Опубликовано: (2007) -
Secure k -ish Nearest Neighbors Classifier
по: Shaul, Hayim, и др.
Опубликовано: (2021) -
A pre-averaged pseudo nearest neighbor classifier
по: Dapeng Li
Опубликовано: (2024-08-01) -
Information Retrieval Document Classified with K-Nearest Neighbor
по: Badruz Zaman, и др.
Опубликовано: (2016-01-01) -
Information Retrieval Document Classified with K-Nearest Neighbor
по: Alifian Sukma, и др.
Опубликовано: (2018-01-01)