A robust imputation method for missing responses and covariates in sample selection models
Sample selection arises when the outcome of interest is partially observed in a study. Although sophisticated statistical methods in the parametric and non-parametric framework have been proposed to solve this problem, it is yet unclear how to deal with selectively missing covariate data using simpl...
Autori principali: | Ogundimu, E, Collins, G |
---|---|
Natura: | Journal article |
Lingua: | English |
Pubblicazione: |
SAGE Publications
2017
|
Documenti analoghi
Documenti analoghi
-
Imputation of Missing Clinical Covariates for Downstream Classification Problems
di: Benjamin Agbo, et al.
Pubblicazione: (2023-01-01) -
On the Relation between Prediction and Imputation Accuracy under Missing Covariates
di: Burim Ramosaj, et al.
Pubblicazione: (2022-03-01) -
Multiple imputation of missing covariates with non-linear effects and interactions: an evaluation of statistical methods
di: Seaman Shaun R, et al.
Pubblicazione: (2012-04-01) -
Robust regression imputation for analyzing missing data
di: Rana, Md. Sohel, et al.
Pubblicazione: (2012) -
Robust Random Regression Imputation method for missing data in the presence of outliers
di: John, Ahamefule Happy
Pubblicazione: (2013)