UNBOUNDED DERIVATIONS OF COMMUTATIVE CSTAR-ALGEBRAS
It is shown that an unbounded *-derivation δ of a unital commutative C*-algebra A is quasi well-behaved if and only if there is a dense open subset U of the spectrum of A such that, for any f in the domain of δ, δ(f) vanishes at any point of U where f attains its norm. An example is given to show th...
1. Verfasser: | Batty, C |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
Springer-Verlag
1978
|
Ähnliche Einträge
Ähnliche Einträge
-
RELATIVE COMMUTANTS IN TENSOR PRODUCTS OF CSTAR-ALGEBRAS
von: Batty, C
Veröffentlicht: (1976) -
ON CERTAIN PAIRS OF AUTOMORPHISMS OF CSTAR-ALGEBRAS
von: Batty, C
Veröffentlicht: (1989) -
EXTENSIONS OF FACTORIAL STATES OF CSTAR-ALGEBRAS
von: Archbold, R, et al.
Veröffentlicht: (1985) -
On some inequalities for derivatives of algebraic polynomials in unbounded regions with angles
von: Cevahir Doğanay Gün
Veröffentlicht: (2021-06-01) -
On unbounded commuting Jacobi operators and some related issues
von: Osipov Andrey
Veröffentlicht: (2019-09-01)