Multi-level Monte Carlo path simulation

We show that multigrid ideas can be used to reduce the computational complexity of estimating an expected value arising from a stochastic differential equation using Monte Carlo path simulations. In the simplest case of a Lipschitz payoff and an Euler discretisation, the computational cost to achiev...

תיאור מלא

מידע ביבליוגרפי
מחבר ראשי: Giles, M
פורמט: Report
יצא לאור: Unspecified 2006
תיאור
סיכום:We show that multigrid ideas can be used to reduce the computational complexity of estimating an expected value arising from a stochastic differential equation using Monte Carlo path simulations. In the simplest case of a Lipschitz payoff and an Euler discretisation, the computational cost to achieve an accuracy of $O(\epsilon)$ is reduced from $O(\epsilon^{-3})$ to $O(\epsilon^{-2} (\log \epsilon)^2)$. The analysis is supported by numerical results showing significant computational savings.