Attention for inference compilation
We present a neural network architecture for automatic amortized inference in universal probabilistic programs which improves on the performance of current architectures. Our approach extends inference compilation (IC), a technique which uses deep neural networks to approximate a posterior distribut...
Главные авторы: | Harvey, W, Munk, A, Baydin, AG, Bergholm, A, Wood, F |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
SciTePress
2022
|
Схожие документы
-
Inference compilation and universal probabilistic programming
по: Le, T, и др.
Опубликовано: (2017) -
Efficient probabilistic inference in the quest for physics beyond the standard model
по: Baydin, AG, и др.
Опубликовано: (2019) -
ToolPhet: Inference of Compiler Provenance From Stripped Binaries With Emerging Compilation Toolchains
по: Hohyeon Jang, и др.
Опубликовано: (2024-01-01) -
Quantitative Inference in a Mechanical Design Compiler
по: Ward, Allen C., и др.
Опубликовано: (2004) -
A Theory of Quantitative Inference Applied to a Mechanical Design Compiler
по: Ward, Allen C.
Опубликовано: (2004)