Maximum a posteriori estimation by search in probabilistic programs
We introduce an approximate search algorithm for fast maximum a posteriori probability estimation in probabilistic programs, which we call Bayesian ascent Monte Carlo (BaMC). Probabilistic programs represent probabilistic models with varying number of mutually dependent finite, countable, and contin...
Hlavní autoři: | Tolpin, D, Wood, F |
---|---|
Médium: | Conference item |
Vydáno: |
AAAI Publications
2015
|
Podobné jednotky
-
Black-box policy search with probabilistic programs
Autor: Van De Meent, J, a další
Vydáno: (2016) -
Maximum a-Posteriori estimation of random fields.
Vydáno: (2003) -
Maximum a Posteriori Estimation of Coupled Hidden Markov Models.
Autor: Rezek, I, a další
Vydáno: (2002) -
Foundation of 2-Symbolic Plithogenic Maximum a Posteriori Estimation
Autor: Nizar Altounji, a další
Vydáno: (2023-11-01) -
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
Autor: Tolpin, D, a další
Vydáno: (2015)