Maximum a posteriori estimation by search in probabilistic programs
We introduce an approximate search algorithm for fast maximum a posteriori probability estimation in probabilistic programs, which we call Bayesian ascent Monte Carlo (BaMC). Probabilistic programs represent probabilistic models with varying number of mutually dependent finite, countable, and contin...
Автори: | Tolpin, D, Wood, F |
---|---|
Формат: | Conference item |
Опубліковано: |
AAAI Publications
2015
|
Схожі ресурси
Схожі ресурси
-
Black-box policy search with probabilistic programs
за авторством: Van De Meent, J, та інші
Опубліковано: (2016) -
Maximum a-Posteriori estimation of random fields.
Опубліковано: (2003) -
Maximum a Posteriori Estimation of Coupled Hidden Markov Models.
за авторством: Rezek, I, та інші
Опубліковано: (2002) -
Foundation of 2-Symbolic Plithogenic Maximum a Posteriori Estimation
за авторством: Nizar Altounji, та інші
Опубліковано: (2023-11-01) -
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
за авторством: Tolpin, D, та інші
Опубліковано: (2015)