Maximum a posteriori estimation by search in probabilistic programs
We introduce an approximate search algorithm for fast maximum a posteriori probability estimation in probabilistic programs, which we call Bayesian ascent Monte Carlo (BaMC). Probabilistic programs represent probabilistic models with varying number of mutually dependent finite, countable, and contin...
Main Authors: | Tolpin, D, Wood, F |
---|---|
格式: | Conference item |
出版: |
AAAI Publications
2015
|
相似书籍
-
Black-box policy search with probabilistic programs
由: Van De Meent, J, et al.
出版: (2016) -
Maximum a-Posteriori estimation of random fields.
出版: (2003) -
Maximum a Posteriori Estimation of Coupled Hidden Markov Models.
由: Rezek, I, et al.
出版: (2002) -
Foundation of 2-Symbolic Plithogenic Maximum a Posteriori Estimation
由: Nizar Altounji, et al.
出版: (2023-11-01) -
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
由: Tolpin, D, et al.
出版: (2015)