Least-squares spectral methods for ODE eigenvalue problems
We develop spectral methods for ODEs and operator eigenvalue problems that are based on a least-squares formulation of the problem. The key tool is a method for rectangular generalized eigenvalue problems, which we extend to quasimatrices and objects combining quasimatrices and matrices. The strengt...
主要な著者: | Hashemi, B, Nakatsukasa, Y |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Society for Industrial and Applied Mathematics
2022
|
類似資料
-
Stable polefinding and rational least-squares fitting via eigenvalues
著者:: Ito, S, 等
出版事項: (2018) -
Rectangular eigenvalue problems
著者:: Hashemi, B, 等
出版事項: (2022) -
Solving Nonlinear Second Order Delay Eigenvalue Problems by Least Square Method
著者:: Israa M. Salman, 等
出版事項: (2020-10-01) -
The Least Eigenvalue of the Complement of the Square Power Graph of G
著者:: Lubna Gul, 等
出版事項: (2021-01-01) -
Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems
著者:: Nakatsukasa, Y, 等
出版事項: (2019)