On the probabilistic feasibility of solutions in multi-agent optimization problems under uncertainty

We investigate the probabilistic feasibility of randomized solutions to two distinct classes of uncertain multi-agent optimization programs. We first assume that only the constraints of the program are affected by uncertainty, while the cost function is arbitrary. Leveraging recent developments on a...

Description complète

Détails bibliographiques
Auteurs principaux: Pantazis, G, Fele, F, Margellos, K
Format: Journal article
Langue:English
Publié: Elsevier 2021

Documents similaires