On the probabilistic feasibility of solutions in multi-agent optimization problems under uncertainty
We investigate the probabilistic feasibility of randomized solutions to two distinct classes of uncertain multi-agent optimization programs. We first assume that only the constraints of the program are affected by uncertainty, while the cost function is arbitrary. Leveraging recent developments on a...
Auteurs principaux: | Pantazis, G, Fele, F, Margellos, K |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Elsevier
2021
|
Documents similaires
-
A posteriori probabilistic feasibility guarantees for Nash equilibria in uncertain multi-agent games
par: Pantazis, G, et autres
Publié: (2021) -
Agent independent probabilistic robustness certificates for robust optimization programs with uncertain quadratic cost
par: Pantazis, G, et autres
Publié: (2021) -
Probabilistic sensitivity of Nash equilibria in multi-agent games: a wait-and-judge approach
par: Fele, F, et autres
Publié: (2020) -
Probabilistically robust stabilizing allocations in uncertain coalitional games
par: Pantazis, G, et autres
Publié: (2022) -
A priori data-driven robustness guarantees on strategic deviations from generalised Nash equilibria
par: Pantazis, G, et autres
Publié: (2024)