Mechanisms of IR amplification in radical cation polarons
Break down of the Born–Oppenheimer approximation is caused by mixing of electronic and vibrational transitions in the radical cations of some conjugated polymers, resulting in unusually intense vibrational bands known as infrared active vibrations (IRAVs). Here, we investigate the mechanism of this...
Автори: | , , , , , , , , |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
Royal Society of Chemistry
2020
|
_version_ | 1826273171956826112 |
---|---|
author | William, JK Jirásek, M Peeks, MD Greetham, GM Sazanovich, IV Donaldson, PM Towrie, M Parker, AW Anderson, HL |
author_facet | William, JK Jirásek, M Peeks, MD Greetham, GM Sazanovich, IV Donaldson, PM Towrie, M Parker, AW Anderson, HL |
author_sort | William, JK |
collection | OXFORD |
description | Break down of the Born–Oppenheimer approximation is caused by mixing of electronic and vibrational transitions in the radical cations of some conjugated polymers, resulting in unusually intense vibrational bands known as infrared active vibrations (IRAVs). Here, we investigate the mechanism of this amplification, and show that it provides insights into intramolecular charge migration. Spectroelectrochemical time-resolved infrared (TRIR) and two-dimensional infrared (2D-IR) spectroscopies were used to investigate the radical cations of two butadiyne-linked conjugated porphyrin oligomers, a linear dimer and a cyclic hexamer. The 2D-IR spectra reveal strong coupling between all the IRAVs and the electronic π–π* polaron band. Intramolecular vibrational energy redistribution (IVR) and vibrational relaxation occur within ∼0.1–7 ps. TRIR spectra show that the transient ground state bleach (GSB) and excited state absorption (ESA) signals have anisotropies of 0.31 ± 0.07 and 0.08 ± 0.04 for the linear dimer and cyclic hexamer cations, respectively. The small TRIR anisotropy for the cyclic hexamer radical cation indicates that the vibrationally excited polaron migrates round the nanoring on a time scale faster than the measurement, i.e. within 0.5 ps, at 298 K. Density functional theory (DFT) calculations qualitatively reproduce the emergence of the IRAVs. The first singlet (S1) excited states of the neutral porphyrin oligomers exhibit similar IRAVs to the radical cations, implying that the excitons have similar electronic structures to polarons. Our results show that IRAVs originate from the strong coupling of charge redistribution to nuclear motion, and from the similar energies of electronic and vibrational transitions. |
first_indexed | 2024-03-06T22:24:08Z |
format | Journal article |
id | oxford-uuid:561555f9-fbed-4fdf-9dbc-66f9e7b69b09 |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T22:24:08Z |
publishDate | 2020 |
publisher | Royal Society of Chemistry |
record_format | dspace |
spelling | oxford-uuid:561555f9-fbed-4fdf-9dbc-66f9e7b69b092022-03-26T16:48:08ZMechanisms of IR amplification in radical cation polaronsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:561555f9-fbed-4fdf-9dbc-66f9e7b69b09EnglishSymplectic ElementsRoyal Society of Chemistry2020William, JKJirásek, MPeeks, MDGreetham, GMSazanovich, IVDonaldson, PMTowrie, MParker, AWAnderson, HLBreak down of the Born–Oppenheimer approximation is caused by mixing of electronic and vibrational transitions in the radical cations of some conjugated polymers, resulting in unusually intense vibrational bands known as infrared active vibrations (IRAVs). Here, we investigate the mechanism of this amplification, and show that it provides insights into intramolecular charge migration. Spectroelectrochemical time-resolved infrared (TRIR) and two-dimensional infrared (2D-IR) spectroscopies were used to investigate the radical cations of two butadiyne-linked conjugated porphyrin oligomers, a linear dimer and a cyclic hexamer. The 2D-IR spectra reveal strong coupling between all the IRAVs and the electronic π–π* polaron band. Intramolecular vibrational energy redistribution (IVR) and vibrational relaxation occur within ∼0.1–7 ps. TRIR spectra show that the transient ground state bleach (GSB) and excited state absorption (ESA) signals have anisotropies of 0.31 ± 0.07 and 0.08 ± 0.04 for the linear dimer and cyclic hexamer cations, respectively. The small TRIR anisotropy for the cyclic hexamer radical cation indicates that the vibrationally excited polaron migrates round the nanoring on a time scale faster than the measurement, i.e. within 0.5 ps, at 298 K. Density functional theory (DFT) calculations qualitatively reproduce the emergence of the IRAVs. The first singlet (S1) excited states of the neutral porphyrin oligomers exhibit similar IRAVs to the radical cations, implying that the excitons have similar electronic structures to polarons. Our results show that IRAVs originate from the strong coupling of charge redistribution to nuclear motion, and from the similar energies of electronic and vibrational transitions. |
spellingShingle | William, JK Jirásek, M Peeks, MD Greetham, GM Sazanovich, IV Donaldson, PM Towrie, M Parker, AW Anderson, HL Mechanisms of IR amplification in radical cation polarons |
title | Mechanisms of IR amplification in radical cation polarons |
title_full | Mechanisms of IR amplification in radical cation polarons |
title_fullStr | Mechanisms of IR amplification in radical cation polarons |
title_full_unstemmed | Mechanisms of IR amplification in radical cation polarons |
title_short | Mechanisms of IR amplification in radical cation polarons |
title_sort | mechanisms of ir amplification in radical cation polarons |
work_keys_str_mv | AT williamjk mechanismsofiramplificationinradicalcationpolarons AT jirasekm mechanismsofiramplificationinradicalcationpolarons AT peeksmd mechanismsofiramplificationinradicalcationpolarons AT greethamgm mechanismsofiramplificationinradicalcationpolarons AT sazanovichiv mechanismsofiramplificationinradicalcationpolarons AT donaldsonpm mechanismsofiramplificationinradicalcationpolarons AT towriem mechanismsofiramplificationinradicalcationpolarons AT parkeraw mechanismsofiramplificationinradicalcationpolarons AT andersonhl mechanismsofiramplificationinradicalcationpolarons |