Deep learning with photosensor timing information as a background rejection method for the Cherenkov Telescope Array
New deep learning techniques present promising new analysis methods for Imaging Atmospheric Cherenkov Telescopes (IACTs) such as the upcoming Cherenkov Telescope Array (CTA). In particular, the use of Convolutional Neural Networks (CNNs) could provide a direct event classification method that uses t...
主要な著者: | Spencer, ST, Armstrong, T, Watson, J, Mangano, S, Renier, Y, Cotter, G |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Elsevier
2021
|
類似資料
-
Science with the Cherenkov Telescope Array
著者:: Acharya, B, 等
出版事項: (2019) -
Muons as a tool for background rejection in imaging atmospheric Cherenkov telescope arrays
著者:: L. Olivera-Nieto, 等
出版事項: (2021-12-01) -
The gamma-ray Cherenkov telescope for the Cherenkov telescope array
著者:: Tibaldo, L, 等
出版事項: (2017) -
Background rejection using image residuals from large telescopes in imaging atmospheric Cherenkov telescope arrays
著者:: L. Olivera-Nieto, 等
出版事項: (2022-12-01) -
Background rejection in atmospheric Cherenkov telescopes using recurrent convolutional neural networks
著者:: R. D. Parsons, 等
出版事項: (2020-05-01)