Deep learning with photosensor timing information as a background rejection method for the Cherenkov Telescope Array
New deep learning techniques present promising new analysis methods for Imaging Atmospheric Cherenkov Telescopes (IACTs) such as the upcoming Cherenkov Telescope Array (CTA). In particular, the use of Convolutional Neural Networks (CNNs) could provide a direct event classification method that uses t...
Asıl Yazarlar: | Spencer, ST, Armstrong, T, Watson, J, Mangano, S, Renier, Y, Cotter, G |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
Elsevier
2021
|
Benzer Materyaller
-
Science with the Cherenkov Telescope Array
Yazar:: Acharya, B, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
Muons as a tool for background rejection in imaging atmospheric Cherenkov telescope arrays
Yazar:: L. Olivera-Nieto, ve diğerleri
Baskı/Yayın Bilgisi: (2021-12-01) -
The gamma-ray Cherenkov telescope for the Cherenkov telescope array
Yazar:: Tibaldo, L, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Background rejection using image residuals from large telescopes in imaging atmospheric Cherenkov telescope arrays
Yazar:: L. Olivera-Nieto, ve diğerleri
Baskı/Yayın Bilgisi: (2022-12-01) -
Background rejection in atmospheric Cherenkov telescopes using recurrent convolutional neural networks
Yazar:: R. D. Parsons, ve diğerleri
Baskı/Yayın Bilgisi: (2020-05-01)