Chemo- and regioselective synthesis of acyl-cyclohexenes by a tandem acceptorless dehydrogenation-[1,5]-hydride shift cascade
An atom-economical methodology to access substituted acyl-cyclohexenes from pentamethylacetophenone and 1,5-diols is described. This process is catalyzed by an iridium(I) catalyst in conjunction with a bulky electron rich phosphine ligand (CataCXium A) which favors acceptorless dehydrogenation over...
Hauptverfasser: | , , , |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
American Chemical Society
2020
|
Zusammenfassung: | An atom-economical methodology to access substituted acyl-cyclohexenes from pentamethylacetophenone and 1,5-diols is described. This process is catalyzed by an iridium(I) catalyst in conjunction with a bulky electron rich phosphine ligand (CataCXium A) which favors acceptorless dehydrogenation over conjugate reduction to the corresponding cyclohexane. The reaction produces water and hydrogen gas as the sole byproducts and a wide range of functionalized acyl-cyclohexene products can be synthesized using this method in very high yields. A series of control experiments were carried out, which revealed that the process is initiated by acceptorless dehydrogenation of the diol followed by a redox-neutral cascade process, which is independent of the iridium catalyst. Deuterium labeling studies established that the key step of this cascade involves a novel base-mediated [1,5]-hydride shift. The cyclohexenyl ketone products could readily be cleaved under mildly acidic conditions to access a range of valuable substituted cyclohexene derivatives.
|
---|