Selective halogenation of pyridines using designed phosphine reagents

Halopyridines are key building blocks for synthesizing pharmaceuticals, agrochemicals, and ligands for metal complexes, but strategies to selectively halogenate pyridine C–H precursors are lacking. We designed a set of heterocyclic phosphines that are installed at the 4-position of pyridines as phos...

詳細記述

書誌詳細
主要な著者: Levy, JN, Alegre-Requena, JV, Liu, R, Paton, RS, McNally, A
フォーマット: Journal article
言語:English
出版事項: American Chemical Society 2020
その他の書誌記述
要約:Halopyridines are key building blocks for synthesizing pharmaceuticals, agrochemicals, and ligands for metal complexes, but strategies to selectively halogenate pyridine C–H precursors are lacking. We designed a set of heterocyclic phosphines that are installed at the 4-position of pyridines as phosphonium salts and then displaced with halide nucleophiles. A broad range of unactivated pyridines can be halogenated, and the method is viable for late-stage halogenation of complex pharmaceuticals. Computational studies indicate that C–halogen bond formation occurs via an SNAr pathway, and phosphine elimination is the rate-determining step. Steric interactions during C–P bond cleavage account for differences in reactivity between 2- and 3-substituted pyridines.