VariBAD: a very good method for Bayes-adaptive deep RL via meta-learning
Trading off exploration and exploitation in an unknown environment is key to maximising expected return during learning. A Bayes-optimal policy, which does so optimally, conditions its actions not only on the environment state but on the agent’s uncertainty about the environment. Computing a Bayes-o...
Asıl Yazarlar: | Zintgraf, L, Shiarlis, K, Igl, M, Schulze, S, Gal, Y, Hofmann, K, Whiteson, S |
---|---|
Materyal Türü: | Conference item |
Dil: | English |
Baskı/Yayın Bilgisi: |
International Conference on Learning Representations
2020
|
Benzer Materyaller
Websites: The Good and the Bad
Yazar:: Ricky W. Telg, ve diğerleri
Baskı/Yayın Bilgisi: (2015-10-01)
Yazar:: Ricky W. Telg, ve diğerleri
Baskı/Yayın Bilgisi: (2015-10-01)
Benzer Materyaller
-
VariBAD: variational bayes-adaptive deep RL via meta-learning
Yazar:: Whiteson, S
Baskı/Yayın Bilgisi: (2021) -
Fast Context Adaptation via Meta-Learning
Yazar:: Zintgraf, L, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
Exploration in approximate hyper-state space for meta reinforcement learning
Yazar:: Zintgraf, L, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
Deep variational reinforcement learning for POMDPs
Yazar:: Igl, M, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
'When they were Good they were Very, Very Good, but When they were Bad...': Clarice Lispector's Naughty Little Girls
Yazar:: Williams, C
Baskı/Yayın Bilgisi: (2013)