Negative curvature in graphical small cancellation groups
We use the interplay between combinatorial and coarse geometric versions of negative curvature to investigate the geometry of infinitely presented graphical Gr′(1/6) small cancellation groups. In particular, we characterize their ‘contracting geodesics,’ which should be thought of as the geodesics t...
Hlavní autoři: | Arzhantseva, G, Cashen, C, Gruber, D, Hume, D |
---|---|
Médium: | Journal article |
Vydáno: |
European Mathematical Society Publishing House
2019
|
Podobné jednotky
-
Geometry of infinitely presented small cancellation groups and quasi-homomorphisms
Autor: Arzhantseva, G, a další
Vydáno: (2018) -
Characterizations of Morse quasi-geodesics via superlinear divergence and sublinear contraction
Autor: Arzhantseva, G, a další
Vydáno: (2017) -
Geometry of infinitely presented small cancellation groups, Rapid Decay
and quasi-homomorphisms
Autor: Arzhantseva, G, a další
Vydáno: (2012) -
Actions of small cancellation groups on hyperbolic spaces
Autor: Abbott, C, a další
Vydáno: (2020) -
Cancellation of quantum corrections on the soft curvature perturbations
Autor: Yuichiro Tada, a další
Vydáno: (2024-01-01)