Accelerating machine learning for trading using programmable switches
High-frequency trading (HFT) employs cutting-edge hardware for rapid decision-making and order execution but often relies on simpler algorithms that may miss deeper market trends. Conversely, lower-frequency algorithmic trading uses machine learning (ML) for better market predictions but higher late...
主要な著者: | Hong, X, Zheng, C, Zohren, S, Zilberman, N |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
IOS Press
2024
|
類似資料
-
LOBIN: in-network machine learning for limit order books
著者:: Hong, X, 等
出版事項: (2023) -
Linnet: limit order books within switches
著者:: Hong, X, 等
出版事項: (2022) -
In-network machine learning using programmable network devices: a survey
著者:: Zheng, C, 等
出版事項: (2023) -
MTPSA: Multi-tenant programmable switches
著者:: Stoyanov, R, 等
出版事項: (2020) -
Iisy: hybrid in-network classification using programmable switches
著者:: Zheng, C, 等
出版事項: (2024)