Cartesian products as profinite completions
We prove that if a Cartesian product of alternating groups is topologically finitely generated, then it is the profinite completion of a finitely generated residually finite group. The same holds for Cartesian producs of other simple groups under some natural restrictions.
Hoofdauteurs: | Kassabov, M, Nikolov, N |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
2006
|
Gelijkaardige items
-
Direct products and profinite completions
door: Nikolov, N, et al.
Gepubliceerd in: (2007) -
Groups of profinite type and profinite rigidity
door: Bar-On, T, et al.
Gepubliceerd in: (2024) -
Constructing uncountably many groups with the same profinite completion
door: Nikolov, N, et al.
Gepubliceerd in: (2021) -
Strange images of profinite groups
door: Nikolov, N
Gepubliceerd in: (2011) -
Algebraic properties of profinite groups
door: Nikolov, N
Gepubliceerd in: (2011)