The density of rational points on curves and surfaces

Let $C$ be an irreducible projective curve of degree $d$ in $\mathbb{P}^3$, defined over $\overline{\mathbb{Q}}$. It is shown that $C$ has $O_{\varepsilon,d}(B^{2/d+\varepsilon})$ rational points of height at most $B$, for any $\varepsilon>0$, uniformly for all curves $C$. This result exten...

Full description

Bibliographic Details
Main Author: Heath-Brown, D
Format: Journal article
Published: 2002