Morse theory without nondegeneracy
We describe an extension of Morse theory to smooth functions on compact Riemannian manifolds, without any nondegeneracy assumptions except that the critical locus must have only finitely many connected components.
Autors principals: | Kirwan, F, Penington, G |
---|---|
Format: | Working paper |
Idioma: | English |
Publicat: |
University of Oxford
2020
|
Ítems similars
-
Morse theory without nondegeneracy
per: Kirwan, FC, et al.
Publicat: (2021) -
Possible scenarios transgressing the nondegeneracy theorem
per: Luiz G.M. Ramos, et al.
Publicat: (2023-05-01) -
Nondegeneracy of the solutions for elliptic problem with critical exponent
per: Qingfang Wang
Publicat: (2024-08-01) -
Nondegeneracy of positive solutions to nonlinear Hardy–Sobolev equations
per: Robert Frédéric
Publicat: (2017-05-01) -
Nondegeneracy of the bubble solutions for critical equations involving the polyharmonic operator
per: Dandan Yang, et al.
Publicat: (2023-03-01)