Morse theory without nondegeneracy
We describe an extension of Morse theory to smooth functions on compact Riemannian manifolds, without any nondegeneracy assumptions except that the critical locus must have only finitely many connected components.
मुख्य लेखकों: | Kirwan, F, Penington, G |
---|---|
स्वरूप: | Working paper |
भाषा: | English |
प्रकाशित: |
University of Oxford
2020
|
समान संसाधन
-
Morse theory without nondegeneracy
द्वारा: Kirwan, FC, और अन्य
प्रकाशित: (2021) -
Possible scenarios transgressing the nondegeneracy theorem
द्वारा: Luiz G.M. Ramos, और अन्य
प्रकाशित: (2023-05-01) -
Nondegeneracy of the solutions for elliptic problem with critical exponent
द्वारा: Qingfang Wang
प्रकाशित: (2024-08-01) -
Nondegeneracy of positive solutions to nonlinear Hardy–Sobolev equations
द्वारा: Robert Frédéric
प्रकाशित: (2017-05-01) -
Nondegeneracy of the bubble solutions for critical equations involving the polyharmonic operator
द्वारा: Dandan Yang, और अन्य
प्रकाशित: (2023-03-01)