Morse theory without nondegeneracy
We describe an extension of Morse theory to smooth functions on compact Riemannian manifolds, without any nondegeneracy assumptions except that the critical locus must have only finitely many connected components.
Hoofdauteurs: | Kirwan, F, Penington, G |
---|---|
Formaat: | Working paper |
Taal: | English |
Gepubliceerd in: |
University of Oxford
2020
|
Gelijkaardige items
-
Morse theory without nondegeneracy
door: Kirwan, FC, et al.
Gepubliceerd in: (2021) -
Possible scenarios transgressing the nondegeneracy theorem
door: Luiz G.M. Ramos, et al.
Gepubliceerd in: (2023-05-01) -
Nondegeneracy of the solutions for elliptic problem with critical exponent
door: Qingfang Wang
Gepubliceerd in: (2024-08-01) -
Nondegeneracy of positive solutions to nonlinear Hardy–Sobolev equations
door: Robert Frédéric
Gepubliceerd in: (2017-05-01) -
Nondegeneracy of the bubble solutions for critical equations involving the polyharmonic operator
door: Dandan Yang, et al.
Gepubliceerd in: (2023-03-01)