Morse theory without nondegeneracy
We describe an extension of Morse theory to smooth functions on compact Riemannian manifolds, without any nondegeneracy assumptions except that the critical locus must have only finitely many connected components.
Главные авторы: | Kirwan, F, Penington, G |
---|---|
Формат: | Working paper |
Язык: | English |
Опубликовано: |
University of Oxford
2020
|
Схожие документы
-
Morse theory without nondegeneracy
по: Kirwan, FC, и др.
Опубликовано: (2021) -
Possible scenarios transgressing the nondegeneracy theorem
по: Luiz G.M. Ramos, и др.
Опубликовано: (2023-05-01) -
Nondegeneracy of the solutions for elliptic problem with critical exponent
по: Qingfang Wang
Опубликовано: (2024-08-01) -
Nondegeneracy of positive solutions to nonlinear Hardy–Sobolev equations
по: Robert Frédéric
Опубликовано: (2017-05-01) -
Nondegeneracy of the bubble solutions for critical equations involving the polyharmonic operator
по: Dandan Yang, и др.
Опубликовано: (2023-03-01)