Nonlocal-interaction equations on uniformly prox-regular sets
We study the well-posedness of a class of nonlocal-interaction equations on general domains Ω⊂Rd, including nonconvex ones. We show that under mild assumptions on the regularity of domains (uniform proxregularity), for -geodesically convex interaction and external potentials, the nonlocal-interactio...
Hlavní autoři: | Carrillo de la Plata, JA, Slepčev, D, Wu, L |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
American Institute of Mathematical Sciences
2016
|
Podobné jednotky
-
Nonlocal-interaction equation on graphs: Gradient flow structure and continuum limit
Autor: Esposito, A, a další
Vydáno: (2021) -
Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces
Autor: Carrillo de la Plata, JA, a další
Vydáno: (2020) -
V-Prox-Regular Functions in Smooth Banach Spaces
Autor: Messaoud Bounkhel, a další
Vydáno: (2020-01-01) -
Sparse identification of nonlocal interaction kernels in nonlinear gradient flow equations via partial inversion
Autor: Carrillo de la Plata, J, a další
Vydáno: (2025) -
Convergence of a particle method for a regularized spatially homogeneous Landau equation
Autor: Carrillo de la Plata, JA, a další
Vydáno: (2023)